期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory
article
Vladimir S. Gerdjikov1  Georgi G. Grahovski1 
[1] Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences;School of Mathematical Sciences, Dublin Institute of Technology
关键词: multi-component MNLS equations;    reduction group;    Riemann–Hilbert problem;    spectral decompositions;    representation theory;   
DOI  :  10.3842/SIGMA.2010.044
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of BD.I -type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlying simple Lie algebra g . Special attention is paid to the structure of the dressing factors in spinor representation of the orthogonal simple Lie algebras of B r ≅ so (2 r +1, C ) type.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001761ZK.pdf 429KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次