期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Erlangen Program at Large-1: Geometry of Invariants
article
Vladimir V. Kisil1 
[1] School of Mathematics, University of Leeds
关键词: analytic function theory;    semisimple groups;    elliptic;    parabolic;    hyperbolic;    Clif ford algebras;    complex numbers;    dual numbers;    double numbers;    split-complex numbers;    M¨obius transformations;   
DOI  :  10.3842/SIGMA.2010.076
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

This paper presents geometrical foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theories based on the representation theory of SL 2 ( R ) group. We describe here geometries of corresponding domains. The principal rôle is played by Clifford algebras of matching types. In this paper we also generalise the Fillmore-Springer-Cnops construction which describes cycles as points in the extended space. This allows to consider many algebraic and geometric invariants of cycles within the Erlangen program approach.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001729ZK.pdf 1239KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次