期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications | |
New Variables of Separation for the Steklov-Lyapunov System | |
article | |
Andrey V. Tsiganov1  | |
[1] St. Petersburg State University | |
关键词: bi-Hamiltonian geometry; variables of separation; | |
DOI : 10.3842/SIGMA.2012.012 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra $e(3) = so(3)\ltimes\mathbb R^3$. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300001574ZK.pdf | 379KB | download |