期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Bethe Vectors of Quantum Integrable Models with GL(3) Trigonometric R -Matrix
article
Samuel Belliard1  Stanislav Pakuliak2  Eric Ragoucy5  Nikita A. Slavnov6 
[1] Université Montpellier 2, Laboratoire Charles Coulomb;Laboratory of Theoretical Physics;Moscow Institute of Physics and Technology;Institute of Theoretical and Experimental Physics;Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie;Steklov Mathematical Institute
关键词: nested algebraic Bethe ansatz;    Bethe vector;    current algebra;   
DOI  :  10.3842/SIGMA.2013.058
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We study quantum integrable models with GL(3) trigonometric $R$-matrix and solvable by the nested algebraic Bethe ansatz. Using the presentation of the universal Bethe vectors in terms of projections of products of the currents of the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_3)$ onto intersections of different types of Borel subalgebras, we prove that the set of the nested Bethe vectors is closed under the action of the elements of the monodromy matrix.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001422ZK.pdf 547KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次