期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
article
Tomasz Brzeziński1 
[1] Department of Mathematics, Swansea University
关键词: smooth algebra;    generalized Weyl algebra;    strongly graded algebra;    noncommutative pillow;    quantum teardrop;    quantum lens space;    quantum real weighted projective plane;   
DOI  :  10.3842/SIGMA.2014.015
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

Recent results by Krähmer [ Israel J. Math. 189 (2012), 237-266] on smoothness of Hopf-Galois extensions and by Liu [arXiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [ Internat. J. Math. 2 (1991), 139-166], quantum teardrops ${\mathcal O}({\mathbb W}{\mathbb P}_q(1,l))$ [ Comm. Math. Phys. 316 (2012), 151-170], quantum lens spaces ${\mathcal O}(L_q(l;1,l))$ [ Pacific J. Math. 211 (2003), 249-263], the quantum Seifert manifold ${\mathcal O}(\Sigma_q^3)$ [ J. Geom. Phys. 62 (2012), 1097-1107], quantum real weighted projective planes ${\mathcal O}({\mathbb R}{\mathbb P}_q^2(l;\pm))$ [ PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces ${\mathcal O}(\Sigma_q^3(l;-))$ [ Axioms 1 (2012), 201-225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001383ZK.pdf 370KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次