期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
article
Bernd J. Schroers1  Matthias Wilhelm2 
[1] Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University;Institut für Mathematik und Institut für Physik
关键词: relativistic wave equations;    quantum groups;    curved momentum space;    noncommutative spacetime;   
DOI  :  10.3842/SIGMA.2014.053
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein-Gordon, Dirac and Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001345ZK.pdf 514KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次