Symmetry Integrability and Geometry-Methods and Applications | |
Local Proof of Algebraic Characterization of Free Actions | |
article | |
Paul F. Baum1  Piotr M. Hajac2  | |
[1] Mathematics Department, The Pennsylvania State University, University Park;Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8;Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski | |
关键词: compact group; free action; Peter–Weyl–Galois condition; | |
DOI : 10.3842/SIGMA.2014.060 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
Let $G$ be a compact Hausdorff topological group acting on a compact Hausdorff topological space $X$. Within the $C^{*}$-algebra $C(X)$ of all continuous complex-valued functions on $X$, there is the Peter-Weyl algebra $\mathcal{P}_G(X)$ which is the (purely algebraic) direct sum of the isotypical components for the action of $G$ on $C(X)$. We prove that the action of $G$ on $X$ is free if and only if the canonical map $\mathcal{P}_G(X)\otimes_{C(X/G)}\mathcal{P}_G(X)\to \mathcal{P}_G(X)\otimes\mathcal{O}(G)$ is bijective. Here both tensor products are purely algebraic, and $\mathcal{O}(G)$ denotes the Hopf algebra of ''polynomial'' functions on $G$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300001338ZK.pdf | 337KB | download |