期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Non-Commutative Resistance Networks
article
Marc A. Rieffel1 
[1] Department of Mathematics, University of California
关键词: resistance network;    Riemannian metric;    Dirichlet form;    Markov;    Leibniz seminorm;    Laplace operator;    resistance distance;    standard deviation;   
DOI  :  10.3842/SIGMA.2014.064
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

In the setting of finite-dimensional $C^*$-algebras ${\mathcal A}$ we define what we call a Riemannian metric for ${\mathcal A}$, which when ${\mathcal A}$ is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001334ZK.pdf 627KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次