Symmetry Integrability and Geometry-Methods and Applications | |
Demazure Modules, Chari-Venkatesh Modules and Fusion Products | |
article | |
Bhimarthi Ravinder1  | |
[1] The Institute of Mathematical Sciences | |
关键词: current algebra; Demazure module; Chari–Venkatesh module; truncated Weyl module; fusion product; | |
DOI : 10.3842/SIGMA.2014.110 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
Let $\mathfrak{g}$ be a finite-dimensional complex simple Lie algebra with highest root $\theta$. Given two non-negative integers $m$, $n$, we prove that the fusion product of $m$ copies of the level one Demazure module $D(1,\theta)$ with $n$ copies of the adjoint representation ${\rm ev}_0 V(\theta)$ is independent of the parameters and we give explicit defining relations. As a consequence, for $\mathfrak{g}$ simply laced, we show that the fusion product of a special family of Chari-Venkatesh modules is again a Chari-Venkatesh module. We also get a description of the truncated Weyl module associated to a multiple of $\theta$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300001288ZK.pdf | 354KB | download |