期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
article
Margit Rösler1  Michael Voit2 
[1] Institut für Mathematik;Fakultät für Mathematik, Technische Universität Dortmund
关键词: Mehler–Heine formula;    Heckman–Opdam polynomials;    Grassmann manifolds;    spherical functions;    central limit theorem;    asymptotic representation theory;   
DOI  :  10.3842/SIGMA.2015.013
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We consider compact Grassmann manifolds $G/K$ over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type $BC$. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of $G/K$, which are constructed by successive decompositions of tensor powers of spherical representations of $G$. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001269ZK.pdf 427KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次