期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications | |
${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors | |
article | |
Stanislav Pakuliak1  Eric Ragoucy2  Nikita A. Slavnov3  | |
[1] Institute of Theoretical & Experimental Physics, Russia Institute of Theoretical & Experimental Physics;Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie;Steklov Mathematical Institute | |
关键词: Bethe ansatz; quantum af fine algebras; composite models; | |
DOI : 10.3842/SIGMA.2015.063 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the ${\rm GL}(3)$-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik-Zamolodchikov equation.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300001219ZK.pdf | 439KB | download |