期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications | |
Multiple Actions of the Monodromy Matrix in $\mathfrak{gl}(2|1)$-Invariant Integrable Models | |
article | |
Arthur Hutsalyuk1  Andrii Liashyk2  Stanislav Z. Pakuliak3  Eric Ragoucy4  Nikita A. Slavnov5  | |
[1] Moscow Institute of Physics and Technology;Bogoliubov Institute for Theoretical Physics;National Research University Higher School of Economics;Laboratoire de Physique Théorique LAPTh;Steklov Mathematical Institute of Russian Academy of Sciences | |
关键词: algebraic Bethe ansatz; superalgebras; scalar product of Bethe vectors; | |
DOI : 10.3842/SIGMA.2016.099 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
We study $\mathfrak{gl}(2|1)$ symmetric integrable models solvable by the nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we derive the actions of the monodromy matrix entries onto these vectors. We show that the result of these actions is a finite linear combination of Bethe vectors. The obtained formulas open a way for studying scalar products of Bethe vectors.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300001082ZK.pdf | 504KB | download |