期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
article
Krishan Rajaratnam1  Raymond G. McLenaghan2  Carlos Valero2 
[1] Department of Mathematics, University of Toronto;Department of Applied Mathematics, University of Waterloo
关键词: completely integrable systems;    concircular tensor;    special conformal Killing tensor;    Killing tensor;    separation of variables;    St¨ackel systems;    warped product;    spaces of constant curvature;    Hamilton–Jacobi equation;    Schr¨odinger equation;   
DOI  :  10.3842/SIGMA.2016.117
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001064ZK.pdf 994KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:4次