期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
A Projective-to-Conformal Fefferman-Type Construction
article
Matthias Hammerl1  Katja Sagerschnig2  Josef Šilhan3  Arman Taghavi-Chabert4  Vojtĕch Zádník5 
[1] University of Vienna, Faculty of Mathematics;Dipartimento di Scienze Matematiche;Masaryk University, Faculty of Science;Università di Torino, Dipartimento di Matematica ''G. Peano'';Masaryk University, Faculty of Education
关键词: parabolic geometry;    projective structure;    conformal structure;    Cartan connection;    Fef ferman spaces;    twistor spinors;   
DOI  :  10.3842/SIGMA.2017.081
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We study a Fefferman-type construction based on the inclusion of Lie groups ${\rm SL}(n+1)$ into ${\rm Spin}(n+1,n+1)$. The construction associates a split-signature $(n,n)$-conformal spin structure to a projective structure of dimension $n$. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000982ZK.pdf 599KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次