期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Manifold Ways to Darboux-Halphen System
article
John Alexander Cruz Morales1  Hossein Movasati2  Younes Nikdelan3  Raju Roychowdhury4  Marcus A.C. Torres2 
[1] Universidad Nacional de Colombia;Instituto Nacional de Matemática Pura e Aplicada (IMPA);Instituto de Matemática e Estatística (IME), Universidade do Estado do Rio de Janeiro (UERJ);Instituto de Física, Universidade de São Paulo (IF-USP)
关键词: Darboux–Halphen system;    Ramanujan system;    Gauss–Manin connection;    relativity and gravitational theory;    Bianchi IX metric;    Frobenius manifold;    Chazy equation;   
DOI  :  10.3842/SIGMA.2018.003
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

Many distinct problems give birth to Darboux-Halphen system of differential equations and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding infinite number of double orthogonal surfaces in $\mathbb{R}^3$. The second is a problem in general relativity about gravitational instanton in Bianchi IX metric space. The third problem stems from the new take on the moduli of enhanced elliptic curves called Gauss-Manin connection in disguise developed by one of the authors and finally in the last problem Darboux-Halphen system emerges from the associative algebra on the tangent space of a Frobenius manifold.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000961ZK.pdf 376KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次