期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians
article
Claudia Maria Chanu1  Giovanni Rastelli1 
[1] Dipartimento di Matematica, Università di Torino
关键词: Kashaev equation;    hexahedron recurrence;    principal minors of symmetric matrices;    cubical complexes;    s-holomorphicity;    cluster algebras;   
DOI  :  10.3842/SIGMA.2019.013
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We study twisted products $H=\alpha^rH_r$ of natural autonomous Hamiltonians $H_r$, each one depending on a separate set, called here separate $r$-block, of variables. We show that, when the twist functions $\alpha^r$ are a row of the inverse of a block-Stäckel matrix, the dynamics of $H$ reduces to the dynamics of the $H_r$, modified by a scalar potential depending only on variables of the corresponding $r$-block. It is a kind of partial separation of variables. We characterize this block-separation in an invariant way by writing in block-form classical results of Stäckel separation of variables. We classify the block-separable coordinates of $\mathbb E^3$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000814ZK.pdf 438KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次