Symmetry Integrability and Geometry-Methods and Applications | |
Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians | |
article | |
Claudia Maria Chanu1  Giovanni Rastelli1  | |
[1] Dipartimento di Matematica, Università di Torino | |
关键词: Kashaev equation; hexahedron recurrence; principal minors of symmetric matrices; cubical complexes; s-holomorphicity; cluster algebras; | |
DOI : 10.3842/SIGMA.2019.013 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
We study twisted products $H=\alpha^rH_r$ of natural autonomous Hamiltonians $H_r$, each one depending on a separate set, called here separate $r$-block, of variables. We show that, when the twist functions $\alpha^r$ are a row of the inverse of a block-Stäckel matrix, the dynamics of $H$ reduces to the dynamics of the $H_r$, modified by a scalar potential depending only on variables of the corresponding $r$-block. It is a kind of partial separation of variables. We characterize this block-separation in an invariant way by writing in block-form classical results of Stäckel separation of variables. We classify the block-separable coordinates of $\mathbb E^3$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000814ZK.pdf | 438KB | download |