期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
The Laurent Extension of Quantum Plane: a Complete List of $U_q(\mathfrak{sl}_2)$-Symmetries
article
Sergey Sinel'shchikov1 
[1] Mathematics Division, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
关键词: quantum universal enveloping algebra;    Hopf algebra;    Laurent polynomial;    quantum symmetry;    weight;   
DOI  :  10.3842/SIGMA.2019.038
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

This work finishes a classification of $U_q(\mathfrak{sl}_2)$-symmetries on the Laurent extension $\mathbb{C}_q\big[x^{\pm 1},y^{\pm 1}\big]$ of the quantum plane. After reproducing the partial results of a previous paper of the author related to symmetries with non-trivial action of the Cartan generator(s) of $U_q(\mathfrak{sl}_2)$ and the generic symmetries, a complete collection of non-generic symmetries is presented. Together, these collections constitute a complete list of $U_q(\mathfrak{sl}_2)$-symmetries on $\mathbb{C}_q\big[x^{\pm 1},y^{\pm 1}\big]$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000789ZK.pdf 555KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次