期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Loop Equations for Gromov-Witten Invariant of $\mathbb{P}^1$
article
Gaëtan Borot1  Paul Norbury2 
[1] Max Planck Institut für Mathematik;School of Mathematics and Statistics, University of Melbourne
关键词: Virasoro constraints;    topological recursion;    Gromov–Witten theory;    mirror symmetry;   
DOI  :  10.3842/SIGMA.2019.061
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We show that non-stationary Gromov-Witten invariants of $\mathbb{P}^1$ can be extracted from open periods of the Eynard-Orantin topological recursion correlators $\omega_{g,n}$ whose Laurent series expansion at $\infty$ compute the stationary invariants. To do so, we overcome the technical difficulties to global loop equations for the spectral $x(z) = z + 1/z$ and $y(z) = \ln z$ from the local loop equations satisfied by the $\omega_{g,n}$, and check these global loop equations are equivalent to the Virasoro constraints that are known to govern the full Gromov-Witten theory of $\mathbb{P}^1$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000766ZK.pdf 544KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次