期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Collective Heavy Top Dynamics
article
Tomoki Ohsawa1 
[1] Department of Mathematical Sciences, The University of Texas at Dallas
关键词: heavy top dynamics;    collectivization;    momentum maps;    Lie–Poisson integrator;   
DOI  :  10.3842/SIGMA.2019.083
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We construct a Poisson map $\mathbf{M}\colon T^{*}\mathbb{C}^{2} \to \mathfrak{se}(3)^{*}$ with respect to the canonical Poisson bracket on $T^{*}\mathbb{C}^{2} \cong T^{*}\mathbb{R}^{4}$ and the $(-)$-Lie-Poisson bracket on the dual $\mathfrak{se}(3)^{*}$ of the Lie algebra of the special Euclidean group $\mathsf{SE}(3)$. The essential part of this map is the momentum map associated with the cotangent lift of the natural right action of the semidirect product Lie group $\mathsf{SU}(2) \ltimes \mathbb{C}^{2}$ on $\mathbb{C}^{2}$. This Poisson map gives rise to a canonical Hamiltonian system on $T^{*}\mathbb{C}^{2}$ whose solutions are mapped by $\mathbf{M}$ to solutions of the heavy top equations. We show that the Casimirs of the heavy top dynamics and the additional conserved quantity of the Lagrange top correspond to the Noether conserved quantities associated with certain symmetries of the canonical Hamiltonian system. We also construct a Lie-Poisson integrator for the heavy top dynamics by combining the Poisson map $\mathbf{M}$ with a simple symplectic integrator, and demonstrate that the integrator exhibits either exact or near conservation of the conserved quantities of the Kovalevskaya top.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000744ZK.pdf 932KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次