期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem
article
Yiannis Loizides1 
[1] Pennsylvania State University
关键词: symplectic geometry;    Hamiltonian G-spaces;    symplectic reduction;    geometric quantization;    quasi-polynomials;    stationary phase;   
DOI  :  10.3842/SIGMA.2019.090
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

In this short note we revisit the 'shift-desingularization' version of the $[Q,R]=0$ theorem for possibly singular symplectic quotients. We take as starting point an elegant proof due to Szenes-Vergne of the quasi-polynomial behavior of the multiplicity as a function of the tensor power of the prequantum line bundle. We use the Berline-Vergne index formula and the stationary phase expansion to compute the quasi-polynomial, adapting an early approach of Meinrenken.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000737ZK.pdf 417KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次