期刊论文详细信息
| Symmetry Integrability and Geometry-Methods and Applications | |
| Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz | |
| article | |
| Moulay Barkatou1  Thomas Cluzeau1  Lucia Di Vizio2  Jacques-Arthur Weil1  | |
| [1] Université de Limoges et CNRS;Université Paris-Saclay, Laboratoire de mathématiques de Versailles | |
| 关键词: linear differential systems; differential Galois theory; Lie algebras; reduced forms; | |
| DOI : 10.3842/SIGMA.2020.054 | |
| 来源: National Academy of Science of Ukraine | |
PDF
|
|
【 摘 要 】
Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202106300000672ZK.pdf | 374KB |
PDF