期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
article
Moulay Barkatou1  Thomas Cluzeau1  Lucia Di Vizio2  Jacques-Arthur Weil1 
[1] Université de Limoges et CNRS;Université Paris-Saclay, Laboratoire de mathématiques de Versailles
关键词: linear differential systems;    differential Galois theory;    Lie algebras;    reduced forms;   
DOI  :  10.3842/SIGMA.2020.054
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000672ZK.pdf 374KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:3次