期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Cyclic Sieving and Cluster Duality of Grassmannian
article
Linhui ShenDaping Weng1 
[1] Department of Mathematics, Michigan State University
关键词: cluster algebra;    cluster duality;    mirror symmetry;    Grassmannian;    cyclic sieving phenomeno;   
DOI  :  10.3842/SIGMA.2020.067
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We introduce a decorated configuration space $\mathcal{C}{\rm onf}_n^\times(a)$ with a potential function $\mathcal{W}$. We prove the cluster duality conjecture of Fock-Goncharov for Grassmannians, that is, the tropicalization of $\big(\mathcal{C}{\rm onf}_n^\times(a), \mathcal{W}\big)$ canonically parametrizes a linear basis of the homogeneous coordinate ring of the Grassmannian $\operatorname{Gr}_a(n)$ with respect to the Plücker embedding. We prove that $\big(\mathcal{C}{\rm onf}_n^\times(a), \mathcal{W}\big)$ is equivalent to the mirror Landau-Ginzburg model of the Grassmannian considered by Eguchi-Hori-Xiong, Marsh-Rietsch and Rietsch-Williams. As an application, we show a cyclic sieving phenomenon involving plane partitions under a sequence of piecewise-linear toggles.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000659ZK.pdf 697KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次