期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Perturbed $(2n-1)$-Dimensional Kepler Problem and the Nilpotent Adjoint Orbits of $U(n, n)$
article
Anatol Odzijewicz1 
[1] Department of Mathematics, University of Białystok
关键词: integrable Hamiltonian systems;    Kepler problem;    nonlinear differential equations;    symplectic geometry;    Poisson geometry;    Kustaanheimo–Stiefel transformation;    celestial mechanics 2020 Mathematics Subject Classification 53D17;    53D20;    53D22;    70H06;   
DOI  :  10.3842/SIGMA.2020.087
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We study the regularized $(2n-1)$-Kepler problem and other Hamiltonian systems which are related to the nilpotent coadjoint orbits of $U(n,n)$. The Kustaanheimo-Stiefel and Cayley regularization procedures are discussed and their equivalence is shown. Some integrable generalization (perturbation) of $(2n-1)$-Kepler problem is proposed.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000639ZK.pdf 475KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:2次