期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Knot Complement, ADO Invariants and their Deformations for Torus Knots
article
John Chae1 
[1] Univeristy of California Davis
关键词: torus knots;    knot complement;    quantum invariant;    q-series;    ADO Polynomials;    Chern–Simons theory;    categorification 2020 Mathematics Subject Classification 57K14;    57K16;    81R50;   
DOI  :  10.3842/SIGMA.2020.134
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

A relation between the two-variable series knot invariant and the Akutsu-Deguchi-Ohtsuki (ADO) invariant was conjectured recently. We reinforce the conjecture by presenting explicit formulas and/or an algorithm for particular ADO invariants of torus knots obtained from the series invariant of complement of a knot. Furthermore, one parameter deformation of ${\rm ADO}_3$ polynomial of torus knots is provided.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000592ZK.pdf 400KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次