期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
A note on the divisibility of class numbers of imaginary quadratic fields $\mathbf{Q}(\sqrt{a^{2} - k^{n}})$
article
Akiko Ito1 
[1] Graduate School of Mathematics, Nagoya University
关键词: Class numbers;    imaginary quadratic fields;    primitive divisors of Lucas numbers.;   
DOI  :  10.3792/pjaa.87.151
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

Let $n > 1$ be an integer, $k > 1$ be an odd integer and $a > 0$ be an even integer. Suppose $a^{2} + b^{2}d = k^{n}$, where $d \neq 1, 3$ is a positive odd square-free integer and $\gcd(a, bd) = 1$. In this paper, we describe imaginary quadratic fields $\mathbf{Q}(\sqrt{a^{2} - k^{n}})$ explicitly whose class numbers are divisible by $n$ if $d \equiv 1, 5, 7\bmod 8$ or $d \equiv 3\bmod 8$ with $(n, 3) = 1$ under certain conditions.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000528ZK.pdf 100KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次