期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences | |
A note on the divisibility of class numbers of imaginary quadratic fields $\mathbf{Q}(\sqrt{a^{2} - k^{n}})$ | |
article | |
Akiko Ito1  | |
[1] Graduate School of Mathematics, Nagoya University | |
关键词: Class numbers; imaginary quadratic fields; primitive divisors of Lucas numbers.; | |
DOI : 10.3792/pjaa.87.151 | |
学科分类:数学(综合) | |
来源: Japan Academy | |
【 摘 要 】
Let $n > 1$ be an integer, $k > 1$ be an odd integer and $a > 0$ be an even integer. Suppose $a^{2} + b^{2}d = k^{n}$, where $d \neq 1, 3$ is a positive odd square-free integer and $\gcd(a, bd) = 1$. In this paper, we describe imaginary quadratic fields $\mathbf{Q}(\sqrt{a^{2} - k^{n}})$ explicitly whose class numbers are divisible by $n$ if $d \equiv 1, 5, 7\bmod 8$ or $d \equiv 3\bmod 8$ with $(n, 3) = 1$ under certain conditions.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000528ZK.pdf | 100KB | download |