期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
Notes on the existence of unramified non-abelian $p$-extensions over cyclic fields
article
Akito Nomura1 
[1] Institute of Science and Engineering, Kanazawa University
关键词: Unramified p-extension;    inverse Galois problem;    ideal class group;    cyclic cubic field.;   
DOI  :  10.3792/pjaa.90.67
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

We study the inverse Galois problem with restricted ramifications. Let $p$ and $q$ be distinct odd primes such that $p\equiv 1 \bmod q$. Let $E(p^{3})$ be the non-abelian group of order $p^{3}$ such that the exponent is equal to $p$, and let $k$ be a cyclic extension over $\mathbf{Q}$ of degree $q$. In this paper, we study the existence of unramified extensions over $k$ with the Galois group $E(p^{3})$. We also give some numerical examples computed with PARI.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000408ZK.pdf 81KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次