期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences | |
Notes on the existence of unramified non-abelian $p$-extensions over cyclic fields | |
article | |
Akito Nomura1  | |
[1] Institute of Science and Engineering, Kanazawa University | |
关键词: Unramified p-extension; inverse Galois problem; ideal class group; cyclic cubic field.; | |
DOI : 10.3792/pjaa.90.67 | |
学科分类:数学(综合) | |
来源: Japan Academy | |
【 摘 要 】
We study the inverse Galois problem with restricted ramifications. Let $p$ and $q$ be distinct odd primes such that $p\equiv 1 \bmod q$. Let $E(p^{3})$ be the non-abelian group of order $p^{3}$ such that the exponent is equal to $p$, and let $k$ be a cyclic extension over $\mathbf{Q}$ of degree $q$. In this paper, we study the existence of unramified extensions over $k$ with the Galois group $E(p^{3})$. We also give some numerical examples computed with PARI.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000408ZK.pdf | 81KB | download |