期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
Weighted inequalities for spherical maximal operator
article
Ramesh Manna1 
[1] School of Mathematics, Harish-Chandra Research Institute
关键词: Spherical maximal operator;    oscillatory integrals;    Ap weights.;   
DOI  :  10.3792/pjaa.91.135
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

Given a set $E=(0, \infty)$, the spherical maximal operator $\mathcal{M}$ associated to the parameter set $E$ is defined as the supremum of the spherical means of a function when the radii of the spheres are in $E$. The aim of this paper is to study the following inequality \begin{equation} ∫_{\mathbf{R}^{n}} (\mathcal{M}f(x))^{p} φ(x) dx ≤ B_{p} ∫_{\mathbf{R}^{n}} |f(x)|^{p} φ(x) dx, \label{Lb1} \end{equation} holds for $p > \frac{2n}{n-1}$ with the continuous spherical maximal operator $\mathcal{M}$ and where the nonnegative function $\phi$ is in some weights obtained from the $A_{p}$ classes. As an application, we will get the boundedness of vector-valued extension of the spherical means.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000389ZK.pdf 113KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次