期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
Counterexamples to $C^{\infty}$ well posedness for some hyperbolic operators with triple characteristics
article
Enrico Bernardi1  Tatsuo Nishitani2 
[1] Dipartimento di Scienze Statistiche;Department of Mathematics, Osaka University
关键词: Cauchy problem;    well-posedness;    Gevrey class;    triple characteristics.;   
DOI  :  10.3792/pjaa.91.19
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

In this paper we prove a well posed and an ill posed result in the Gevrey category for a simple model hyperbolic operator with triple characteristics, when the principal symbol cannot be smoothly factorized, and whose propagation cone is not transversal to the triple characteristic manifold, thus confirming the conjecture that the Ivrii-Petkov condition is not sufficient for the $C^{\infty}$ well posedness unless the propagation cone is transversal to the characteristic manifold, albeit for a limited class of operators. Moreover we are able not only to disprove $C^{\infty}$ well posedness, but we can actually estimate the precise Gevrey threshold where well posedness will cease to hold.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000365ZK.pdf 120KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:1次