期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
Toric 2-Fano manifolds and extremal contractions
article
Hiroshi Sato1 
[1] Department of Applied Mathematics, Faculty of Sciences, Fukuoka University
关键词: Toric variety;    Mori theory;    2-Fano manifold.;   
DOI  :  10.3792/pjaa.92.121
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

We show that for a projective toric manifold with the ample second Chern character, if there exists a Fano contraction, then it is isomorphic to the projective space. For the case that the second Chern character is nef, the Fano contraction gives either a projective line bundle structure or a direct product structure. We also show that, for a toric weakly 2-Fano manifold, there does not exist a divisorial contraction to a point.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000356ZK.pdf 80KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次