期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
The representation function for sums of three squares along arithmetic progressions
article
Paul Pollack1 
[1] Department of Mathematics, University of Georgia, Boyd Graduate Studies Research Center
关键词: Class number;    imaginary quadratic field;    three squares.;   
DOI  :  10.3792/pjaa.92.96
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

For positive integers $n$, let $r(n) = \#\{(x,y,z) \in\mathbf{Z}^{3}: x^{2}+y^{2}+z^{2}=n\}$. Let $g$ be a positive integer, and let $A\bmod{M}$ be any congruence class containing a squarefree integer. We show that there are infinitely many squarefree positive integers $n\equiv A\bmod{M}$ for which $g$ divides $r(n)$. This generalizes a result of Cho.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000351ZK.pdf 81KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次