期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences | |
The representation function for sums of three squares along arithmetic progressions | |
article | |
Paul Pollack1  | |
[1] Department of Mathematics, University of Georgia, Boyd Graduate Studies Research Center | |
关键词: Class number; imaginary quadratic field; three squares.; | |
DOI : 10.3792/pjaa.92.96 | |
学科分类:数学(综合) | |
来源: Japan Academy | |
【 摘 要 】
For positive integers $n$, let $r(n) = \#\{(x,y,z) \in\mathbf{Z}^{3}: x^{2}+y^{2}+z^{2}=n\}$. Let $g$ be a positive integer, and let $A\bmod{M}$ be any congruence class containing a squarefree integer. We show that there are infinitely many squarefree positive integers $n\equiv A\bmod{M}$ for which $g$ divides $r(n)$. This generalizes a result of Cho.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000351ZK.pdf | 81KB | download |