Proceedings of the Japan Academy, Series A. Mathematical Sciences | |
Applications of the Laurent-Stieltjes constants for Dirichlet $L$-series | |
article | |
Sumaia Saad Eddin1  | |
[1] Graduate School of Mathematics, Nagoya University | |
关键词: Mahler problem; Liouville number; transcendental function.; | |
DOI : 10.3792/pjaa.93.120 | |
学科分类:数学(综合) | |
来源: Japan Academy | |
【 摘 要 】
The Laurent-Stieltjes constants $\gamma_{n}(\chi)$ are, up to a trivial coefficient, the coefficients of the Laurent expansion of the usual Dirichlet $L$-series: when $\chi$ is non-principal, $(-1)^{n}\gamma_{n}(\chi)$ is simply the value of the $n$-th derivative of $L(s,\chi)$ at $s=1$. In this paper, we give an approximation of the Dirichlet $L$-functions in the neighborhood of $s=1$ by a short Taylor polynomial. We also prove that the Riemann zeta function $\zeta(s)$ has no zeros in the region $|s-1|\leq 2.2093$, with $0\leq \Re{(s)}\leq 1$. This work is a continuation of [24].
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000328ZK.pdf | 82KB | download |