期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
Applications of the Laurent-Stieltjes constants for Dirichlet $L$-series
article
Sumaia Saad Eddin1 
[1] Graduate School of Mathematics, Nagoya University
关键词: Mahler problem;    Liouville number;    transcendental function.;   
DOI  :  10.3792/pjaa.93.120
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

The Laurent-Stieltjes constants $\gamma_{n}(\chi)$ are, up to a trivial coefficient, the coefficients of the Laurent expansion of the usual Dirichlet $L$-series: when $\chi$ is non-principal, $(-1)^{n}\gamma_{n}(\chi)$ is simply the value of the $n$-th derivative of $L(s,\chi)$ at $s=1$. In this paper, we give an approximation of the Dirichlet $L$-functions in the neighborhood of $s=1$ by a short Taylor polynomial. We also prove that the Riemann zeta function $\zeta(s)$ has no zeros in the region $|s-1|\leq 2.2093$, with $0\leq \Re{(s)}\leq 1$. This work is a continuation of [24].

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000328ZK.pdf 82KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次