期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences | |
A note on transcendental entire functions mapping uncountable many Liouville numbers into the set of Liouville numbers | |
article | |
Jean Lelis1  Diego Marques1  Josimar Ramirez2  | |
[1] Universidade de Braslia, Campus Universita´rio Darcy Ribeiro;Universidade Federal de Uberlaˆndia, Campus Santa Moˆnica | |
关键词: Finite difference method; nonlinear partial differential equations; Cauchy problem; ill-posed problems.; | |
DOI : 10.3792/pjaa.93.111 | |
学科分类:数学(综合) | |
来源: Japan Academy | |
【 摘 要 】
In 1906, Maillet proved that given a non-constant rational function $f$, with rational coefficients, if $\xi$ is a Liouville number, then so is $f(\xi)$. Motivated by this fact, in 1984, Mahler raised the question about the existence of transcendental entire functions with this property. In this work, we define an uncountable subset of Liouville numbers for which there exists a transcendental entire function taking this set into the set of the Liouville numbers.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000326ZK.pdf | 82KB | download |