期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
Symmetry breaking operators for the restriction of representations of indefinite orthogonal groups $O(p,q)$
article
Toshiyuki Kobayashi1  Alex Leontiev1 
[1] Graduate School of Mathematical Sciences, The University of Tokyo;Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
关键词: Symmetric polynomials;    Grothendieck polynomials;    K-theory;    Grassmannians;    Schubert varieties.;   
DOI  :  10.3792/pjaa.93.86
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

For the pair $(G, G') =(O(p+1, q+1), O(p,q+1))$, we construct and give a complete classification of intertwining operators ( symmetry breaking operators ) between most degenerate spherical principal series representations of $G$ and those of the subgroup $G'$, extending the work initiated by Kobayashi and Speh [Mem. Amer. Math. Soc. 2015] in the real rank one case where $q=0$. Functional identities and residue formulæ of the regular symmetry breaking operators are also provided explicitly. The results contribute to Program C of branching problems suggested by the first author [Progr. Math. 2015].

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000322ZK.pdf 614KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次