期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
The signs of the Stieltjes constants associated with the Dedekind zeta function
article
Sumaia Saad Eddin1 
[1] Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler University
关键词: Stieltjes constants;    Riemann zeta function;    Dedekind zeta function.Quasi-log canonical pairs;    normalization;    Du Bois singularities.Quasi-symmetries;    rigidity;    determinantal point process (DPP);    de Branges space.;   
DOI  :  10.3792/pjaa.94.93
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

The Stieltjes constants $\gamma_{n}(K)$ of a number field $K$ are the coefficients of the Laurent expansion of the Dedekind zeta function $\zeta_{K}(s)$ at its pole $s=1$. In this paper, we establish a similar expression of $\gamma_{n}(K)$ as Stieltjes obtained in 1885 for $\gamma_{n}(\mathbf{Q})$. We also study the signs of $\gamma_{n}(K)$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000303ZK.pdf 79KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次