期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences | |
The signs of the Stieltjes constants associated with the Dedekind zeta function | |
article | |
Sumaia Saad Eddin1  | |
[1] Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler University | |
关键词: Stieltjes constants; Riemann zeta function; Dedekind zeta function.Quasi-log canonical pairs; normalization; Du Bois singularities.Quasi-symmetries; rigidity; determinantal point process (DPP); de Branges space.; | |
DOI : 10.3792/pjaa.94.93 | |
学科分类:数学(综合) | |
来源: Japan Academy | |
【 摘 要 】
The Stieltjes constants $\gamma_{n}(K)$ of a number field $K$ are the coefficients of the Laurent expansion of the Dedekind zeta function $\zeta_{K}(s)$ at its pole $s=1$. In this paper, we establish a similar expression of $\gamma_{n}(K)$ as Stieltjes obtained in 1885 for $\gamma_{n}(\mathbf{Q})$. We also study the signs of $\gamma_{n}(K)$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000303ZK.pdf | 79KB | download |