期刊论文详细信息
| Proceedings of the Japan Academy, Series A. Mathematical Sciences | |
| A result on the number of cyclic subgroups of a finite group | |
| article | |
| Marius Tărnăuceanu1  | |
| [1] Faculty of Mathematics, ‘‘Al.I. Cuza’’ University | |
| 关键词: Finite groups; p-groups; number of cyclic subgroups.; | |
| DOI : 10.3792/pjaa.96.018 | |
| 学科分类:数学(综合) | |
| 来源: Japan Academy | |
PDF
|
|
【 摘 要 】
Let $G$ be a finite group and $\alpha(G)=\frac{|C(G)|}{|G|}$, where $C(G)$ denotes the set of cyclic subgroups of $G$. In this short note, we prove that $\alpha(G)\leq\alpha(Z(G))$ and we describe the groups $G$ for which the equality occurs. This gives some sufficient conditions for a finite group to be 4-abelian or abelian.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202106300000262ZK.pdf | 50KB |
PDF