期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
The second moment for counting prime geodesics
article
Ikuya Kaneko1 
[1] Tsukuba Kaisei High School
关键词: Prime Geodesic Theorem;    L-functions;    subconvexity;    spectral summation formulæ;    Kloosterman sums;    exponential sums.;   
DOI  :  10.3792/pjaa.96.002
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

A brighter light has freshly been shed upon the second moment of the Prime Geodesic Theorem. We work with such moments in the two and three dimensional hyperbolic spaces. Letting $E_{\Gamma}(X)$ be the error term arising from counting prime geodesics associated to $\Gamma = \mathrm{PSL}_{2}(\mathbf{Z}[i])$, the bound $E_{\Gamma}(X) \ll X^{3/2+\epsilon}$ is proved in a square mean sense. Our second moment bound is the pure counterpart of the work of Balog \textit{et al.} for $\Gamma = \mathrm{PSL}_{2}(\mathbf{Z})$, and the main innovation entails the delicate analysis of sums of Kloosterman sums. We also infer pointwise bounds from the standpoint of the second moment. Finally, we announce the pointwise bound $E_{\Gamma}(X) \ll X^{67/42+\epsilon}$ for $\Gamma = \mathrm{PSL}_{2}(\mathbf{Z}[i])$ by an application of the Weyl-type subconvexity.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000246ZK.pdf 117KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次