BMC Plant Biology | |
Two Cyc2CL transcripts (Cyc2CL-1 and Cyc2CL-2) may play key roles in the petal and stamen development of ray florets in chrysanthemum | |
Ming Sun1  Tangren Cheng1  Hua Liu1  Huitang Pan1  Jia Wang1  Qixiang Zhang2  | |
[1] Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China;Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China;Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China; | |
关键词: Chrysanthemum morifolium; Ray florets; Disc florets; CYC2; Stamen abortion; Alternative splicing; | |
DOI : 10.1186/s12870-021-02884-z | |
来源: Springer | |
【 摘 要 】
BackgroundChrysanthemum morifolium is one of the most popular ornamental crops. The capitulum, which is the main ornamental part of chrysanthemum plants, consists of ligulate marginal ray florets, an attractive corolla (petals), and radially hermaphroditic disc florets, but no stamens. In Asteraceae species, the zygomorphic ray florets evolved from the actinomorphic disc florets. During this process, the zygomorphic ligulate corolla arose and the stamens were aborted. Although molecular genetic research has clarified ray floret development to some extent, the precise molecular mechanism underlying ray floret development in chrysanthemum remained unclear.ResultsA CYC2-like gene, Cyc2CL, was cloned from C. morifolium ‘Fenditan’. Subsequent analyses revealed that the alternative splicing of Cyc2CL, which occurred in the flower differentiation stage, resulted in the production of Cyc2CL-1 and Cyc2CL-2 in the apical buds. Prior to this stage, only Cyc2CL-1 was produced in the apical buds. A fluorescence in situ hybridization analysis of labeled Cyc2CL-1 and Cyc2CL-2 RNA indicated that Cyc2CL-2 was first expressed in the involucre tissue during the final involucre differentiation stage, but was subsequently expressed in the receptacle and floret primordia as the floral bud differentiation stage progressed. Moreover, Cyc2CL-2 was highly expressed in the inflorescence tissue during the corolla formation stage, and the expression remained high until the end of the floral bud differentiation stage. Furthermore, the overexpression of Cyc2CL-1 and Cyc2CL-2 in transgenic Arabidopsis inhibited stamen and petal development. Therefore, both Cyc2CL-1 and Cyc2CL-2 encode candidate regulators of petal development and stamen abortion and are important for the ray floret development in chrysanthemum.ConclusionIn this study, we characterized the alternatively spliced transcripts of the CYC2-like gene that differ subtly regarding expression and function. The data presented herein will be useful for clarifying the regulatory mechanisms associated with the CYC2-like gene and may also be important for identifying the key genes and molecular mechanisms controlling the development of ray florets in chrysanthemum.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106293957124ZK.pdf | 3061KB | download |