Journal of Algebra Combinatorics Discrete Structures and Applications | |
Non–existence of some 4–dimensional Griesmer codes over finite fields | |
article | |
Kazuki Kumegawa1  Tatsuya Maruta2  | |
[1] Department of Mathematics and Information Sciences, Osaka Prefecture University;Department of Mathematical Sciences, Osaka Prefecture University | |
关键词: Optimal linear codes; Griesmer bound; Arcs in PG(r; q); | |
DOI : 10.13069/jacodesmath.427968 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Yildiz Technical University | |
【 摘 要 】
We prove the non–existence of [gq(4, d), 4, d]q codes for d = 2q 3 − rq2 − 2q + 1 for 3 ≤ r ≤ (q + 1)/2, q ≥ 5; d = 2q 3 − 3q 2 − 3q + 1 for q ≥ 9; d = 2q 3 − 4q 2 − 3q + 1 for q ≥ 9; and d = q 3 − q 2 − rq − 2 with r = 4, 5 or 6 for q ≥ 9, where gq(4, d) = ∑3 i=0 「 d/qi 」 . This yields that nq(4, d) = gq(4, d) + 1 for 2q 3−3q 2−3q+1 ≤ d ≤ 2q 3−3q 2 , 2q 3−5q 2−2q+1 ≤ d ≤ 2q 3−5q 2 and q 3−q 2−rq−2 ≤ d ≤ q 3−q 2−rq with 4 ≤ r ≤ 6 for q ≥ 9 and that nq(4, d) ≥ gq(4, d) + 1 for 2q 3 − rq2 − 2q + 1 ≤ d ≤ 2q 3 − rq2 − q for 3 ≤ r ≤ (q + 1)/2, q ≥ 5 and 2q 3 − 4q 2 − 3q + 1 ≤ d ≤ 2q 3 − 4q 2 − 2q for q ≥ 9, where nq(4, d) denotes the minimum length n for which an [n, 4, d]q code exists.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202105240003912ZK.pdf | 681KB | download |