期刊论文详细信息
Austrian Journal of Statistics
Extracting Information from Interval Data Using Symbolic Principal Component Analysis
article
M. R. Oliveira1  M. Vilela1  A. Pacheco1  Rui Valadas2  Paulo Salvador3 
[1] CEMAT and Instituto Superior Técnico, Universidade de Lisboa;IT and Instituto Superior Técnico, Universidade de Lisboa;IT andUniversidade de Aveiro
关键词: interval data;    symbolic principal component analysis;    Internet data;   
DOI  :  10.17713/ajs.v46i3-4.673
学科分类:医学(综合)
来源: Austrian Statistical Society
PDF
【 摘 要 】

We introduce generic definitions of symbolic variance and covariance for random interval-valued variables, that lead to a unified and insightful interpretation of four known symbolic principal component estimation methods: CPCA, VPCA, CIPCA, and SymCovPCA. Moreover, we propose the use of truncated versions of symbolic principal components, that use a strict subset of the original symbolic variables, as a way to improve the interpretation of symbolic principal components. Furthermore, the analysis of a real dataset leads to a meaningful characterization of Internet traffic applications, while highligting similarities between the symbolic principal component estimation methods considered in the paper.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202105240000089ZK.pdf 330KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次