Austrian Journal of Statistics | |
Extracting Information from Interval Data Using Symbolic Principal Component Analysis | |
article | |
M. R. Oliveira1  M. Vilela1  A. Pacheco1  Rui Valadas2  Paulo Salvador3  | |
[1] CEMAT and Instituto Superior Técnico, Universidade de Lisboa;IT and Instituto Superior Técnico, Universidade de Lisboa;IT andUniversidade de Aveiro | |
关键词: interval data; symbolic principal component analysis; Internet data; | |
DOI : 10.17713/ajs.v46i3-4.673 | |
学科分类:医学(综合) | |
来源: Austrian Statistical Society | |
【 摘 要 】
We introduce generic definitions of symbolic variance and covariance for random interval-valued variables, that lead to a unified and insightful interpretation of four known symbolic principal component estimation methods: CPCA, VPCA, CIPCA, and SymCovPCA. Moreover, we propose the use of truncated versions of symbolic principal components, that use a strict subset of the original symbolic variables, as a way to improve the interpretation of symbolic principal components. Furthermore, the analysis of a real dataset leads to a meaningful characterization of Internet traffic applications, while highligting similarities between the symbolic principal component estimation methods considered in the paper.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202105240000089ZK.pdf | 330KB | download |