期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition
Rita Mancini1  Angela Sorice2  Laura Grumetti2  Alessandra Leone2  Alfredo Budillon2  Tania Moccia2  Federica Iannelli2  Maria Rita Milone2  Rita Lombardi2  Chiara Ciardiello2  Maria Serena Roca2  Biagio Pucci2  Elena Di Gennaro2  Susan Costantini2  Simona De Rienzo2  Carlo Vitagliano2  Francesca Bruzzese3  Gennaro Ciliberto4 
[1] Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy;Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale” – IRCCS, Via M. Semmola, 80131, Naples, Italy;Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale” – IRCCS, Via M. Semmola, 80131, Naples, Italy;Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale” – IRCCS, Via Ammiraglio Bianco, 83013, Mercogliano, AV, Italy;IRCCS “Regina Elena” National Cancer Institute, Rome, Italy;
关键词: Valproic acid;    Statin;    Mevalonate pathway;    YAP;    Prostate cancer;    Cancer stem cells;   
DOI  :  10.1186/s13046-020-01723-7
来源: Springer
PDF
【 摘 要 】

BackgroundDespite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models.MethodsSynergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice.ResultsWe demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation.ConclusionOverall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202104279172868ZK.pdf 4779KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:2次