期刊论文详细信息
Diagnostic and Prognostic Research
Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review
Suzanne Mason1  Richard Jacques1  Janette Turner1  Julia Williams2  Jamie Miles3 
[1] School of Health and Related Research, 3rd Floor, Regent Court (ScHARR), 30 Regent Street, S1 4DA, Sheffield, UK;University of Herfordshire, Hatfield, Herfordshire, UK;Yorkshire Ambulance Service, Brindley Way, WF2 0XQ, Wakefield, UK;
关键词: Ambulance service;    Emergency department;    Machine learning;    Triage;    Patients;   
DOI  :  10.1186/s41512-020-00084-1
来源: Springer
PDF
【 摘 要 】

BackgroundThe primary objective of this review is to assess the accuracy of machine learning methods in their application of triaging the acuity of patients presenting in the Emergency Care System (ECS). The population are patients that have contacted the ambulance service or turned up at the Emergency Department. The index test is a machine-learning algorithm that aims to stratify the acuity of incoming patients at initial triage. This is in comparison to either an existing decision support tool, clinical opinion or in the absence of these, no comparator. The outcome of this review is the calibration, discrimination and classification statistics.MethodsOnly derivation studies (with or without internal validation) were included. MEDLINE, CINAHL, PubMed and the grey literature were searched on the 14th December 2019. Risk of bias was assessed using the PROBAST tool and data was extracted using the CHARMS checklist. Discrimination (C-statistic) was a commonly reported model performance measure and therefore these statistics were represented as a range within each machine learning method. The majority of studies had poorly reported outcomes and thus a narrative synthesis of results was performed.ResultsThere was a total of 92 models (from 25 studies) included in the review. There were two main triage outcomes: hospitalisation (56 models), and critical care need (25 models). For hospitalisation, neural networks and tree-based methods both had a median C-statistic of 0.81 (IQR 0.80-0.84, 0.79-0.82). Logistic regression had a median C-statistic of 0.80 (0.74-0.83). For critical care need, neural networks had a median C-statistic of 0.89 (0.86-0.91), tree based 0.85 (0.84-0.88), and logistic regression 0.83 (0.79-0.84).ConclusionsMachine-learning methods appear accurate in triaging undifferentiated patients entering the Emergency Care System. There was no clear benefit of using one technique over another; however, models derived by logistic regression were more transparent in reporting model performance. Future studies should adhere to reporting guidelines and use these at the protocol design stage.Registration and fundingThis systematic review is registered on the International prospective register of systematic reviews (PROSPERO) and can be accessed online at the following URL: https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020168696This study was funded by the NIHR as part of a Clinical Doctoral Research Fellowship.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202104261716266ZK.pdf 1208KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:9次