BMC Musculoskeletal Disorders | |
Biomechanical comparison between single-row with triple-loaded suture anchor and suture-bridge double-row rotator cuff repair | |
Zhi-Wen Yan1  Hui-Feng Zhu2  Yong Hu2  Cheng-Guo Li2  Tao Wang2  Cheng-Long Pan2  He-Bei He2  Min-Cong Wang2  Chuan Li3  | |
[1] Anatomy Laboratory, Haiyuan College of Kunming Medical University, Kunming City, Yunnan Province, China;Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China;Department of Orthopaedics, 920 Hospital of Joint Logistics Suppport Force of Chinese People’s Liberation Army, Kunming City, Yunnan Province, China; | |
关键词: Rotator cuff tear; Single-row; Triple-loaded suture anchor; Suture bridge; Biomechanical testing; | |
DOI : 10.1186/s12891-020-03654-y | |
来源: Springer | |
【 摘 要 】
BackgroundNumerous biomechanical and clinical studies comparing different techniques for rotator cuff repair have been reported, yet universal consensus regarding the superior technique has not achieved. A medially-based single-row with triple-loaded suture anchor (also referred to as the Southern California Orthopedic Institute [SCOI] row) and a suture-bridge double-row (SB-DR) with Push-Locks have been shown to result in comparable improvement in treating rotator cuff tear, yet the biomechanical difference is unknown. The purpose of the current study was to determine whether a SCOI row repair had comparable initial biomechanical properties to a SB-DR repair.MethodsSix matched pairs of fresh-frozen cadaveric shoulders with full-thickness supraspinatus tendon tears we created were included. Two different repairs were performed for each pair (SCOI row and SB-DR methods). Specimens were mounted on a material testing machine to undergo cyclic loading, which was cycled from 10 to 100 N at 1 Hz for 500 cycles. Construct gap formation was recorded at an interval of 50 cycles. Samples were then loaded to failure and modes of failure were recorded. Repeated-measures analysis of variance and pair-t test were used for statistical analyses.ResultsThe construct gap formation did not differ between SCOI row and SB-DR repairs (P = 0.056). The last gap displacement was 1.93 ± 0.37 mm for SCOI row repair, and 1.49 ± 0.55 mm for SB-DR repair. The tensile load for 5 mm of elongation and ultimate failure were higher for SCOI row repair compared to SB-DR repair (P = 0.011 and 0.028, respectively). The ultimate failure load was 326.34 ± 11.52 N in the SCOI row group, and 299.82 ± 27.27 N in the SB-DR group. Rotator cuff repair with the SCOI row method failed primarily at the suture- tendon interface, whereas pullout of the lateral row anchors was the primary mechanism of failure for repair with the SB-DR method.ConclusionRotator cuff repair with the SCOI row method has superior biomechanical properties when compared with the SB-DR method. Therefore, SCOI row repair using a medially-based single-row technique with triple-loaded suture anchor is recommended to improve the initial strength in treating full-thickness rotator cuff tears.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202104245724912ZK.pdf | 1225KB | download |