期刊论文详细信息
Biology Direct
NAUTICA: classifying transcription factor interactions by positional and protein-protein interaction information
Stefano Perna1  Pietro Pinoli1  Stefano Ceri1  Limsoon Wong2 
[1] Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Via Giuseppe Ponzio 34/5, 20133, Milan, Italy;National University of Singapore, Singapore, Singapore;
关键词: Transcription factors;    Interaction classification;    Protein−protein interactions;    TF-TF competition;    Data-driven analysis;   
DOI  :  10.1186/s13062-020-00268-1
来源: Springer
PDF
【 摘 要 】

BackgroundInferring the mechanisms that drive transcriptional regulation is of great interest to biologists. Generally, methods that predict physical interactions between transcription factors (TFs) based on positional information of their binding sites (e.g. chromatin immunoprecipitation followed by sequencing (ChIP-Seq) experiments) cannot distinguish between different kinds of interaction at the same binding spots, such as co-operation and competition.ResultsIn this work, we present the Network-Augmented Transcriptional Interaction and Coregulation Analyser (NAUTICA), which employs information from protein-protein interaction (PPI) networks to assign TF-TF interaction candidates to one of three classes: competition, co-operation and non-interactions. NAUTICA filters available PPI network edges and fits a prediction model based on the number of shared partners in the PPI network between two candidate interactors.ConclusionsNAUTICA improves on existing positional information-based TF-TF interaction prediction results, demonstrating how PPI information can improve the quality of TF interaction prediction. NAUTICA predictions - both co-operations and competitions - are supported by literature investigation, providing evidence on its capability of providing novel interactions of both kinds.ReviewersThis article was reviewed by Zoltán Hegedüs and Endre Barta.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202104241393382ZK.pdf 1102KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:2次