期刊论文详细信息
Anais da Academia Brasileira de Ciências
On Ribaucour transformations and applications to linear Weingarten surfaces
Keti Tenenblat1 
[1] ,UnB Departamento de Matemática Brasília DF ,Brazil
关键词: Ribaucour transformations;    linear Weingarten surfaces;    minimal surfaces;    constant mean curvature;    transformações de Ribaucour;    superfícies de Weingarten lineares;    superfícies mínimas;    curvatura média constante;   
DOI  :  10.1590/S0001-37652002000400001
来源: SciELO
PDF
【 摘 要 】

We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with flat normal bundle, motivated by the classical definition and by more recent extensions. The new definition provides a precise treatment of the geometric aspect of such transformations preserving lines of curvature and it can be applied to submanifolds whose principal curvatures have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean space.

【 授权许可】

CC BY   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202103040000284ZK.pdf 220KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:2次