期刊论文详细信息
Materials Research
Synthesis, Characterization and Dry Sliding Wear Behavior of In-situ Formed TiAl3 Precipitate Reinforced A356 Alloy Produced by Mechanical Alloying Method
Özyürek Dursun1  Tuncay Tansel1  Evlen Hatice1  Çiftci İbrahim1 
关键词: aluminum composites;    synthesis;    wear behavior;    mechanical alloying;   
DOI  :  10.1590/1516-1439.020215
来源: SciELO
PDF
【 摘 要 】

In this present study, the effect of in-situ formed TiAl3 and AlTiSi intermetallic phases within A356 aluminum alloy on the dry sliding wear behaviors was investigated. The TiAl3 and AlTiSi intermetallic phases were obtained by synthesizing A356 aluminum alloy containing 6% titanium for different times (1, 4, 8 and 16h). The cold pressed samples were sintered in an argon atmosphere at 530 °C for one hour (10 °C/min.) and then cooled in the furnace. The sintered samples were synthesized at 550 °C for different times (1, 4, 8 and 16h), and the in-situ aluminum matrix composites (AMCs) were produced. Wear tests of the AMCs were performed under 30 N load and at 1 ms-1sliding speed for five different sliding distances. As the result of the studies performed, formation of in-situ TiAl3 and AlTiSi intermetallic phases were detected. With the increase in synthesizing time, the porosity in the structure was found to be reduced. In addition, it was observed that the densities and hardness of the composites increased depending on the synthesizing time. The wear test results revealed that increasing hardness values of A356 + 6% Ti AMCs decreased the weight loss.

【 授权许可】

CC BY   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130153384ZK.pdf 2254KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:9次