Brazilian Journal of Chemical Engineering | |
SIMULATION OF THERMAL DECOMPOSITION OF MINERAL INSULATING OIL | |
V. G. M. Cruz1  A. L. H. Costa1  M. L. L. Paredes1  | |
关键词: Dissolved gas analysis; Mineral insulating oil; Thermal decomposition; Power transformer; | |
DOI : 10.1590/0104-6632.20150323s00003531 | |
来源: SciELO | |
【 摘 要 】
AbstractDissolved gas analysis (DGA) has been applied for decades as the main predictive maintenance technique for diagnosing incipient faults in power transformers since the decomposition of the mineral insulating oil (MIO) produces gases that remain dissolved in the liquid phase. Nevertheless, the most known diagnostic methods are based on findings of simplified thermodynamic and compositional models for the thermal decomposition of MIO, in addition to empirical data. The simulation results obtained from these models do not satisfactorily reproduce the empirical data. This paper proposes a flexible thermodynamic model enhanced with a kinetic approach and selects, among four compositional models, the one offering the best performance for the simulation of thermal decomposition of MIO. The simulation results obtained from the proposed model showed better adequacy to reported data than the results obtained from the classical models. The proposed models may be applied in the development of a phenomenologically-based diagnostic method.
【 授权许可】
CC BY
All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202005130129357ZK.pdf | 1004KB | download |