期刊论文详细信息
Journal of the Brazilian Chemical Society
Potentiometric Titration and Out-Of-Equilibrium pH Response of the Biotite‑Water System
Vicente R. Almeida1  Bruno Szpoganicza1  Steeve Bonneville1 
关键词: potentiometric titrations;    biotite;    linear out-of-equilibrium thermodynamics;    soils;   
DOI  :  10.5935/0103-5053.20150162
来源: SciELO
PDF
【 摘 要 】

Minerals in soils contribute significantly to the capacity of soils to buffer pH disturbance. In this paper, we present the pH buffering capacity of a common soil phyllosilicate mineral, biotite. We performed equilibrium potentiometric titrations and we also monitored the pH response kinetics of the mineral-water system in order to develop an out-of-equilibrium model able to capture the interactions between minerals and the surrounding aqueous fluid. During titrations, after each addition of titrant solution from pH 11 to ca. 3, the pH response patterns were monitored over time until reaching a pseudo-equilibrium pH value. Based on the potentiometric dataset Best7, equilibrium calculations were performed to obtain the concentrations and the equilibrium protonation constants of each deprotonable component that fit best our titration curve. In parallel, the out-of-equilibrium pH responses over time at each point of the titration were used in a simple first-order kinetic approach that allow for the determination of “slow” proton exchange [H+ex]t0(mol L-1) and the associated rate constants for the exchange reactions, k (s-1). Our results show a maximum in “slow” proton exchange [H+ex]t0 associated to a minimal value of k at pH < 5 while at neutral and basic pH exhibits the opposite, i.e. , fast rate constant for a minimum value of the “slow” proton exchange. Expressing the observed “slow” proton exchange processes in terms of entropy production, our result demonstrate that the maximum resilience stability of biotite-water system to pH perturbation is in acidic pH, probably due to the consumption of proton associated with biotite dissolution reactions.

【 授权许可】

CC BY   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130107742ZK.pdf 727KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:20次