期刊论文详细信息
Engenharia Agrícola
Rainfall erosivity for the State of Rio de Janeiro estimated by artificial neural network
Daniel F. De Carvalho2  Joseph K. Khoury Júnior1  Carlos A. A. Varella1  Jacqueline Z. Giori1  Roriz L. Machado1 
[1] ,UFRRJ Instituto de Tecnologia Departamento de Engenharia
关键词: geographic information system;    interpolation methods;    soil conservation;    sistema de informação geográfica;    métodos de interpolação;    conservação de solo;   
DOI  :  10.1590/S0100-69162012000100020
来源: SciELO
PDF
【 摘 要 】

The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.

【 授权许可】

CC BY   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130067905ZK.pdf 386KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:11次