期刊论文详细信息
Química Nova
LS-SVM: uma nova ferramenta quimiométrica para regressão multivariada. Comparação de modelos de regressão LS-SVM e PLS na quantificação de adulterantes em leite em pó empregando NIR
Marco F. Ferrão1  Cesar Mello1  Alessandra Borin1  Danilo A. Maretto1  Ronei J. Poppi1 
关键词: support vector machines;    multivariate regression;    powdered milk;   
DOI  :  10.1590/S0100-40422007000400018
来源: SciELO
PDF
【 摘 要 】

Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.

【 授权许可】

CC BY-NC   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130062094ZK.pdf 594KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:4次