期刊论文详细信息
Revista Brasileira de Ciência do Solo
Competitive sorption and desorption of phosphate and citrate in clayey and sandy loam soils
Matheus Fonseca De Souza2  Emanuelle Mercês Barros Soares1  Ivo Ribeiro Da Silva1  Roberto Ferreira Novais1  Mailson Félix De Oliveira Silva1 
[1] ,Capixaba Institute of Research Technical Assistance and Rural Extension - INCAPERES ,Brazil
关键词: incubation time;    Latosol;    organic acids;    stirred-flow;    ácidos orgânicos;    Latossolo;    incubação;    stirred-flow;   
DOI  :  10.1590/S0100-06832014000400011
来源: SciELO
PDF
【 摘 要 】

The increase of organic acids in soils can reduce phosphorus sorption. The objective of the study was to evaluate the competitive sorption of P and citrate in clayey and sandy loam soils, using a stirred-flow system. Three experiments were performed with soil samples (0-20 cm layer) of clayey (RYL-cl) and sandy loam (RYL-sl) Red Yellow Latosols (Oxisols). In the first study, the treatments were arranged in a 2 × 5 factorial design, with two soil types and five combinations of phosphorus and citrate application (only P; P + citrate; and citrate applied 7, 22, 52 min before P); in the second, the treatments were arranged in a 2 × 2 factorial design, corresponding to two soils and two forms of P and citrate application (only citrate and citrate + P); and in the third study, the treatments in a 2 × 2 × 6 factorial design consisted of two soils, two extractors (citrate and water) and six incubation times. In the RYL-cl and RYL-sl, P sorption was highest (44 and 25 % of P application, respectively), in the absence of citrate application. Under citrate application, P sorption was reduced in all treatments. The combined application of citrate and P reduced P sorption to 25.8 % of the initially applied P in RYL-cl and to 16.7 % in RYL-sl, in comparison to P without citrate. Citrate sorption in RYL-cl and RYL-sl was highest in the absence of P application, corresponding to 32.0 and 30.2 % of the citrate applied, respectively. With P application, citrate sorption was reduced to 26.4 and 19.7 % of the initially applied citrate in RYL-cl and RYL-sl, respectively. Phosphorus desorption was greater when citrate was used. Phosphorus desorption with citrate and water was higher in the beginning (until 24 h of incubation of P) in RYL-cl and RYL-sl, indicating a rapid initial phase, followed by a slow release phase. This suggests that according to the contact time of P with the soil colloids, the previously adsorbed P can be released to the soil solution in the presence of competing ligands such as citrate. In conclusion, a soil management with continuous input of organic acids is desirable, in view of their potential to compete for P sorption sites, especially in rather weathered soils.

【 授权许可】

CC BY   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130054734ZK.pdf 133KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次